Microeconomics

Sixth Edition

N. Gregory Mankiw

Chapter: Firms in Competitive Markets

In this chapter, look for the answers to these questions:

- What is a perfectly competitive market?
- What is marginal revenue? How is it related to total and average revenue?
- How does a competitive firm determine the quantity that maximizes profits?
- When might a competitive firm shut down in the short run? Exit the market in the long run?
- What does the market supply curve look like in the short run? In the long run?

Introduction: A Scenario

- Just after graduating, you are unemployed since no one wants to hire a BBA graduate (lol) so you run your own business.
- You have to decide how much to produce, what price to charge, how many workers to hire, etc.
- What factors should affect these decisions?
 - Your costs (studied in preceding chapter)
 - How much competition you face
- We begin by studying the behavior of firms in perfectly competitive markets.

Characteristics of Perfect Competition

- 1. Many buyers and many sellers
- 2. The goods offered for sale are largely the same.
- 3. Firms can freely enter or exit the market.
 - Because of 1 & 2, each buyer and seller is a "price taker" – takes the price as given.

The Revenue of a Competitive Firm

Total revenue (TR)

$$TR = P \times Q$$

Average revenue (AR)

$$AR = \frac{TR}{Q} = P$$

Marginal Revenue (MR): The change in TR from selling one more unit.

$$MR = \frac{\Delta TR}{\Delta Q}$$

ACTIVE LEARNING 1:

Exercise

Fill in the empty spaces of the table.

Q	P	TR	AR	MR
0	\$10		n.a.	
1	\$10		\$10	-
2	\$10			
3	\$10			
4	\$10	\$40		\$10
5	\$10	\$50		Ψ10

ACTIVE LEARNING 1:

Answers

Fill in the empty spaces of the table.

Q	P	$TR = \mathbf{P} \times \mathbf{Q}$	$AR = \frac{TR}{Q}$	$MR = \frac{\Delta TR}{\Delta \mathbf{Q}}$
0	\$10	\$0	n.a.	\$10
1	\$10	\$10	\$10	
2	\$10	\$20	\$10	\$10
3	\$10	\$30	\$10	\$10
4	\$10	\$40	\$10	\$10
5	\$10	\$50	\$10	\$10

ACTIVE LEARNING 1:

Answers

Fill in the empty spaces of the table.

Q	P	$TR = P \times Q$	$AR = \frac{TR}{Q}$	$MR = \frac{\Delta TR}{\Delta \mathbf{Q}}$
0	\$10	\$0	n.a.	\$10
1	\$10	\$10	\$10	
2	\$10	Notice MR =		\$10 \$10
3	\$10	\$30	\$10	\$10
4	\$10	\$40	\$10	·
5	\$10 -	\$50	\$10	\$10

MR = P for a Competitive Firm

- A competitive firm can keep increasing its output without affecting the market price.
- So, each one-unit increase in Q causes revenue to rise by P, i.e., MR = P.

MR = P is only true for firms in competitive markets.

Profit Maximization

- What **Q** maximizes the firm's profit?
- To find the answer, "Think at the margin."

If increase **Q** by one unit, revenue rises by *MR*, cost rises by *MC*.

- If MR > MC, then increase Q to raise profit.
- If MR < MC, then reduce Q to raise profit.</p>

Profit Maximization

(continued from earlier exercise)

At any **Q** with MR > MC, increasing **Q** raises profit.

At any **Q** with MR < MC, reducing **Q** raises profit.

Q	TR	TC	Profit	MR	MC	Δ Profit = $MR - MC$
0	\$0	\$5	-\$5	M40	Φ.4	ФО
1	10	9	1	\$10	\$4	\$6
•	10	<u> </u>	•	10	6	4
2	20	15	5	10	8	2
3	30	23	7	10	O	
			•	10	10	0
4	40	33	7	10	10	2
5	50	45	5	10	12	–2
	0	10				

MC and the Firm's Supply Decision

Rule: MR = MC at the profit-maximizing **Q**.

At Q_a , MC < MR. So, increase Q to raise profit.

At Q_b , MC > MR. So, reduce Qto raise profit.

At Q_1 , MC = MR. Changing Qwould lower profit.

MC and the Firm's Supply Decision

If price rises to P_2 , then the profitmaximizing quantity rises to Q_2 .

The *MC* curve determines the firm's **Q** at any price.

Hence,

the *MC* curve <u>is</u> the firm's supply curve.

Shutdown vs. Exit

Shutdown:

A short-run decision not to produce anything because of market conditions.

Exit:

A long-run decision to leave the market.

A firm that shuts down temporarily must still pay its fixed costs. A firm that exits the market does not have to pay any costs at all, fixed or variable.

A Firm's Short-Run Decision to Shut Down

- If firm shuts down temporarily,
 - revenue falls by TR
 - costs fall by VC
- So, the firm should shut down if TR < VC.</p>
- Divide both sides by \mathbf{Q} : $TR/\mathbf{Q} < VC/\mathbf{Q}$
- So we can write the firm's decision as:

Shut down if P < AVC

A Competitive Firm's SR Supply Curve

The firm's SR supply curve is the portion of its *MC* curve above *AVC*.

If P > AVC, then firm produces Q where P = MC.

If P < AVC, then firm shuts down (produces Q = 0).

The Irrelevance of Sunk Costs

- Sunk cost: a cost that has already been committed and cannot be recovered
- Sunk costs should be irrelevant to decisions;
 you must pay them regardless of your choice.
- FC is a sunk cost: The firm must pay its fixed costs whether it produces or shuts down.
- So, FC should not matter in the decision to shut down.

A Firm's Long-Run Decision to Exit

- If firm exits the market,
 - revenue falls by TR
 - costs fall by TC
- So, the firm should exit if TR < TC.</p>
- Divide both sides by Q to rewrite the firm's decision as:

Exit if P < ATC

A New Firm's Decision to Enter the Market

- In the long run, a new firm will enter the market if it is profitable to do so: if TR > TC.
- Divide both sides by Q to express the firm's entry decision as:

Enter if P > ATC

The Competitive Firm's LR Supply Curve

The firm's LR supply curve is the portion of its *MC* curve above *LRATC*.

ACTIVE LEARNING 2A: Identifying a firm's profit

Determine this firm's total profit.

Identify the area on the graph that represents the firm's profit.

ACTIVE LEARNING 2A:

Answers

A competitive firm

ACTIVE LEARNING 2B: Identifying a firm's loss

Determine this firm's total loss.

Identify the area on the graph that represents the firm's loss.

ACTIVE LEARNING 2B:

Answers

Market Supply: Assumptions

- 1) All existing firms and potential entrants have identical costs.
- 2) Each firm's costs do not change as other firms enter or exit the market.
- 3) The number of firms in the market is
 - fixed in the short run (due to fixed costs)
 - variable in the long run (due to free entry and exit)

The SR Market Supply Curve

- As long as P ≥ AVC, each firm will produce its profit-maximizing quantity, where MR = MC.
- Recall from Chapter 4:
 At each price, the market quantity supplied is the sum of quantity supplied by each firm.

The SR Market Supply Curve

Example: 1000 identical firms.

At each P, market $Q^s = 1000 \text{ x}$ (one firm's Q^s)

Entry & Exit in the Long Run

- In the LR, the number of firms can change due to entry & exit.
- If existing firms earn positive economic profit,
 - New firms enter.
 - SR market supply curve shifts right.
 - **P** falls, reducing firms' profits.
 - Entry stops when firms' economic profits have been driven to zero.

Entry & Exit in the Long Run

- In the LR, the number of firms can change due to entry & exit.
- If existing firms incur losses,
 - Some will exit the market.
 - SR market supply curve shifts left.
 - P rises, reducing remaining firms' losses.
 - Exit stops when firms' economic losses have been driven to zero.

The Zero-Profit Condition

- Long-run equilibrium:
 - The process of entry or exit is complete remaining firms earn zero economic profit.
- Zero economic profit occurs when P = ATC.
- Since firms produce where P = MR = MC, the zero-profit condition is P = MC = ATC.
- Recall that MC intersects ATC at minimum ATC.
- Hence, in the long run, P = minimum ATC.

The LR Market Supply Curve

In the long run, the typical firm earns zero profit. The LR market supply curve is horizontal at **P** = minimum *ATC*.

Why Do Firms Stay in Business if Profit = 0?

- Recall, economic profit is revenue minus <u>all</u> costs – including implicit costs, like the opportunity cost of the owner's time and money.
- In the zero-profit equilibrium, firms earn enough revenue to cover these costs.

A firm begins in long-run eq'm...

...but then an increase in demand raises **P**,...

...leading to SR profits for the firm.

Over time, profits induce entry, shifting **S** to the right, reducing **P**...

...driving profits to zero and restoring long-run eq'm.

CONCLUSION: The Efficiency of a Competitive Market

• Profit-maximization: MC = MR

• Perfect competition: P = MR

• So, in the competitive eq'm: P = MC

- Recall, MC is cost of producing the marginal unit.
 P is value to buyers of the marginal unit.
- So, the competitive eq'm is efficient, maximizes total surplus.
- In the next chapter, monopoly: pricing & production decisions, deadweight loss, regulation.

CHAPTER SUMMARY

- For a firm in a perfectly competitive market, price = marginal revenue = average revenue.
- If P > AVC, a firm maximizes profit by producing the quantity where MR = MC. If P < AVC, a firm will shut down in the short run.
- If P < ATC, a firm will exit in the long run.</p>
- In the short run, entry is not possible, and an increase in demand increases firms' profits.
- With free entry and exit, profits = 0 in the long run, and P = minimum ATC.